On the Riemann Zeta-function and the Divisor Problem

نویسندگان

  • Aleksandar Ivić
  • A. Ivić
چکیده

Let ∆(x) denote the error term in the Dirichlet divisor problem, and E(T ) the error term in the asymptotic formula for the mean square of |ζ( 1 2 + it)|. If E∗(t) = E(t) − 2π∆∗(t/2π) with ∆∗(x) = −∆(x) + 2∆(2x) − 1 2 ∆(4x), then we obtain ∫ T 0 (E(t)) dt ≪ε T . We also show how our method of proof yields the bound R

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subconvexity for the Riemann Zeta-function and the Divisor Problem

A simple proof of the classical subconvexity bound ζ( 1 2 + it) ≪ε t1/6+ε for the Riemann zeta-function is given, and estimation by more refined techniques is discussed. The connections between the Dirichlet divisor problem and the mean square of |ζ( 1 2 + it)| are analysed. 1. Convexity for the Riemann zeta-function Let as usual (1.1) ζ(s) = ∞

متن کامل

Recent Progress on the Dirichlet Divisor Problem and the Mean Square of the Riemann Zeta-function

Let ∆(x) and E(t) denote respectively the remainder terms in the Dirichlet divisor problem and the mean square formula for the Riemann zeta-function on the critical line. This article is a survey of recent developments on the research of these famous error terms in number theory. These include upper bounds, Ω-results, sign changes, moments and distribution, etc. A few open problems will also be...

متن کامل

On the Mean Square of the Riemann Zeta Function and the Divisor Problem

Let ∆(T ) and E(T ) be the error terms in the classical Dirichlet divisor problem and in the asymptotic formula for the mean square of the Riemann zeta function in the critical strip, respectively. We show that ∆(T ) and E(T ) are asymptotic integral transforms of each other. We then use this integral representation of ∆(T ) to give a new proof of a result of M. Jutila.

متن کامل

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

On the Riemann Zeta-function and the Divisor Problem Iv

Let ∆(x) denote the error term in the Dirichlet divisor problem, and E(T ) the error term in the asymptotic formula for the mean square of |ζ( 1 2 + it)|. If E∗(t) = E(t)− 2π∆∗(t/2π) with ∆∗(x) = −∆(x) + 2∆(2x)− 1 2 ∆(4x), then it is proved that

متن کامل

Multiple finite Riemann zeta functions

Observing a multiple version of the divisor function we introduce a new zeta function which we call a multiple finite Riemann zeta function. We utilize some q-series identity for proving the zeta function has an Euler product and then, describe the location of zeros. We study further multi-variable and multi-parameter versions of the multiple finite Riemann zeta functions and their infinite cou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004